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Abstract-Thermal instability and heat transfer in a system consisting of multiple layers separated by solid 
partitions are studied. A closed form solution is derived when the system is subjected to a uniform heat 
flux from below and adiabatic boundary conditions at two ends, For limiting cases of single and double 
layers, the critical Rayleigh numbers agree with previously published results. The solid partitions are found 
to be most effective in suppressing flow and heat transfer when they are equally distributed in a single fluid. 
The equivalent Rayleigh number is shown to be the weighted average of the product of the thermal 

conductivity and the height of each layer. 

1. INTRODUCTION 

THE STUDY of thermal instability and heat transfer in 
a system with one or more layers heated from below 
finds many important applications in metal casting 
operation, crystal growth, heat transfer in air pockets 
of heat exchangers, air in the multiple layer glass 
window, solar energy collector, and in many other 
geological, chemical and astrophysical systems. The 
theoretical study of the above-mentioned problem has 

a direct link to the origination of turbulence, non- 
linear instability of the flow, bifurcation and fre- 
quency doubling. In many situations, one may be 
concerned about the conditions which lead to the 
motion in the quiescent fluid, and the heat transfer 
mechanism switching from conduction to convec- 
tion. In the other cases, one may be interested to know 
how to suppress the possible convection due to 
bottom heating. Even though single layer systems 
[l-5] and double layer systems [6-IO] heated from 
below have received a great deal of attention in the 
past, there have been very few studies related to the 
thermal instability and heat transfer phenomena in a 
system with more than two layers. 

The objective of this paper is to study the onset of 
a system consisting of multi-layer fluids separated by 
solid partitions, and the consequent heat transfer 
increase due to the fluid motion. The system under 
consideration is displayed in Fig. I. Here a steady heat 
flux through the bottom is supplied to the system 
which contains M layers of fluid and (M- 1) layers 
of solid. The total number of layers is N = 2&f-- 1. 

Each layer is a shallow cavity, so that its height, h,, 
satisfies hi CC L. The approximation of parallel flow 
in each fluid layer enables the stream-function and 
temperature to be expressed as fourth- and fifth-order 
polynomials, respectively. Using appropriate bound- 
ary conditions at the interfaces, the unknown 

coefficients in the polynomials can be determined. 
With energy conservation across all the layers, the 
critical heat flux can be found for the onset of motion, 
and the consequent heat transfer rate can thus be 

obtained. The closed form solution is especially inter- 
esting since it will provide an easy approach to this 
complex problem. Attention will be drawn to physical 
aspects of the influence of the conductivity, thickness 
and relative position of the solid partitions in the 

system. 

2. GOVERNING EQUATIONS AND 

BOUNDARY CONDITIONS 

A two-dimensional shallow cavity filled with mul- 
tiple layers of fluids separated by solid partitions is 
considered. The system is heated by a uniform heat 

flux q from below, and the end walls are adiabatic. 
Let subscript i denote the ith layer. For the fluid 
layers, with the Boussinesq approximation and the 
approximation of constant physical properties, one 
can write the continuity equation, the Navier-Stokes 
equations, and the energy equation for the steady state 
as follows : 

(UJ., + (d., = 0 

~~(~JJ+C’,(4.,. = - ~(Pi).,fv,[(tr).,,+(u,) .,,,‘I 

u,(d,, + dc’,)., = 

- ; W.y + v,[(~,),,x + h),,.,J +&AT 

w-ii),x+~cz),, = ~,Kr,),,,+(n.,,l. 

(1) 

(2) 

(3) 

(4) 

For the solid layer, the energy equation takes the form 

(T,),,,.+ (T,).,, = 0. (5) 
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NOMENCLATURE 

u, h integration constants in the energy 

equation 
A aspect ratio for the two-layer system 

(equation (55b)) 
C temperature gradient in the x-direction 

‘z specific heat 

9 gravitational acceleration 
h height of system 

11, height of layer i 

I, J, K constants in equations (37))(39) 

4.f: Y) Jacobian, .LY, -.LcI, 
L length of cavity 

M number of fluid layers 

N total number of layers 

NM Nusselt number 

P static pressure 

4 heat flux 
R ratio defined in equation (62) 

Rll Rayleigh number 

T temperature 

TR reference temperature 

u, 1 velocity components in the X- and 
r-directions. respectively 

x. I‘ Cartesian coordinates 

XEI fluid to solid conductivity ratio. 

Greek symbols 

; 

thermal diffusivity 
volumetric expansion coefficient 

0 temperature varying in y 
I? kinematic viscosity 

P density 

ti stream-function. 

Subscripts 
1 fluid properties 

C critical quantities 
i ithlayer(i= 1,2,...,N) 

t time derivative 
spatial derivative. 

Other symbol 
V2 Laplacian operator. 

1 

FIG. 1. Multi-layer system 
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To unify our solution in a simpler fashion, the solid 
is taken as fluid with infinitely large viscosity, so that 
equations (l)-(4) will be reduced to 

U# = 0 (6) 

vi = 0 (7) 

(K),,, + (0,X.X = 0 (8) 

which is just what we need for the solid equation. As 
a result of the separation of fluids by solid partitions, 
the velocities at interfaces are zero. By this we can 
write the boundary conditions as : 

at interface (i, i- 1) 

Ui = 0, rJ{ = 0, lf_, = 0, vi_, = 0, 

T; = T;-,, k&7), = ki- 2 (7;- A, 

at interface (i, i+ 1) 

(9) 

Uj = 0, vj = 0, U,+, = 0, vi+, = 0, 

T = Ti, ,i Wl;),y = k+ I Vi+ A,, (10) 

at two end walls of x = 0 and L 

ui = 0, ui = 0, k,(T;),x = 0. (11) 

A stream-function is introduced at this stage, so that 
the continuity equation is always satisfied 

ui = (tii),.,,, vi = - (II/,),.? (12) 

By cross differentiation of equations (2) and (3), one 
can eliminate the pressure terms in the momentum 
equations, resulting in 

J($i> V”$i) = viV*tii-88iU-J,,. (13) 

The energy equation (4) can also be expressed as 

J(Jti, T,) = -a,V’T, (14) 

where 

Ju;d =I&, -f,gx. (15) 
The corresponding boundary conditions for the 

stream-function will be : 

at interface (& i- 1) 

ll/i = (Icli),y = 0, 11/,-l = ($i- J,y = 0 (16) 

at interface (& it- 1) 

liii = (ilfi)y = 0, $i, 1 = (liti+ ,>, = 0 (17) 

at two end walls of x = 0 and L 

tii = (ICli),n = 0. (18) 

3. ANALYTICAL SOLUTION 

The solution ofequations (13) and (14) with bound- 
ary conditions (16)-(18) for an arbitrary number of 
layers is difficult and time consuming. Since different 
layers may have different physical properties, they 
will enforce different length and velocity scales. The 
present study seeks the solution of a unicellular pat- 

tern in each fluid layer as shown in Fig. 2. For this 
unicellular flow pattern, apart from the end walls, a 
parallel flow assumption can describe the basic flow 
features well, and will be used in this paper. It is shown 
that when heat flux is increased to a certain level, 
multiple solutions may become possible. However, we 
will narrow down to the unicellular flow pattern to 
make the simplest closed form solution possible. 

The parallel flow approximation is originally from 
the study of infinitely extended thin layers, and has 
been used to study natural convection in a shallow 
cavity heated at two ends by Cormack et ni. [ 1 1] and 
by Bejan and Tien [12] and in a shallow horizontal 
cylindrical cavity heated at two ends by Bejan and 
Tien [13]. It has been extended to a shallow inclined 
cavity to study the multiple steady states of flow by 
Vasseur et al. [14] and to the B~nard-~arangonj 
instability in a two-layer system by Yang and Yang 
[lo]. This parallel Aow is an onset mode, which has 
zero wave number, due to constant heat flux from 
below [5]. For the constant temperature condition, 
the wave number of the onset mode is larger than zero 
[I 51. As shown in Section 4, the approximation is valid 
for the present situation. In practice, the constant heat 
flux boundary condition at the bottom can be supplied 
electrically by passing the necessary amount of current 
through heating coils suitably placed below the surface 
[l]. The energy thus supplied can be conveniently mea- 
sured by the square of the current times the resistance 
of the circuit. If the top surface is a free surface, the 
energy conducted up to the surface must be carried 
away by convectiveconductive transport to the 
environment. A constant heat flux boundary can be 
recognized when the Biot number is sufficiently high 
[5]. In the parallel flow approximation, the flow is 
assumed to depend on 1~ only, so that 2‘: = 0, 
U, = u,(y). The temperature field is assumed to be 
a superposition of a linear function of x and an un- 
known function of y. With this approximation. 
obviously the boundary conditions of equation (11) 
in the x-direction cannot be exactly satisfied, instead 
an integral condition on the average flux at any J 
section is used as in the following : 

The above condition for a single layer has been dis- 
cussed and used by Vasseur et nl. [14] and Bejan 
[ 161. For the uniform flux heating in a single layer as 
demonstrated by Vasseur et al. [14], the parallel flow 
approximation gives a reasonable prediction for the 
flow and heat transfer in a cavity with an aspect ratio 
less than 0.5 (shallow cavity). With this approxi- 
mation we have 

+i = ti/XY) (20) 

7: = C,x+O,(y) (21) 

where the C,‘s are the unknown constant temperature 
gradients in the x-direction in the ith layer. As the 
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FK. 2. Sketch of parallel flow in the system 

continuity of the temperature at the interface requires, 

it can be shown that at interface (i, i- 1) for any x 

T, = T, , (22) 

will result in 

C,=Cz=...=C,=...=C. (23) 

With conditions (20)-(23), the governing equations 
can be simplified to 

If JJ is taken as the local coordinate with respect to the 
ith layer, the boundary conditions are simply 

at J’ = 0, Ic/, = ($,)., = 0, 0, = 0, I 

h(@,)., = k ~I(@, ,I., (26) 

at J’ = /I,, $, = (I/?,)., = 0, 0, = O,, ,, 

k,(G),,. = k,+ 1 Co,+ ,I.,. (27) 

The solutions of equations (24) and (25) are fourth- 
and fifth-order polynomials, respectively. With 
boundary conditions (26) and (27), we have 

> 
+n,y+h, (29) 

where a, and b, are integration constants. Continuity 
of heat flux at interfaces (i, i- 1) and (i, i+ 1) leads to 

k, la,-, = k,u, = LIti,+,. (30) 

For the first layer, where i = 1, a uniform heat flux at 
the bottom surface gives 

k,u, = -q. (31) 

Combining with equation (30), one has 

k,a, =kza2=...=k,u,=...=kNa,y= -4, 

(32) 

Therefore 

q 
u,= - -, 

k, 
i= l....,N. (33) 

Based on the continuity of temperature at interface (i, 
i- I), it is seen that 

h, = @z I(Y =I,, /’ (34) 

If the temperature at the bottom is selected as a ref- 
erence temperature, TR, it is immediately found that 

h, = TK (35) 

and /I,, for i = 2,3,. , N, can be deduced from equa- 

tion (34). 
At this point, the only unknown in equations (28) 

and (29) is constant C, which can be determined by 
equation (19). It should be noted that equation (19) 
represents the energy conservation across all N layers 
at any y section. If it is applied to each individual 
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layer, the constant C will be different for each layer, 

which violates the requirement of temperature con- 
tinuity at the interface set up by equations (22) and 

(23). 
Now by making use of equation (19) we are able to 

find a condition that gives the value of C 

KC’-(I-J)C = 0. (36) 

Here K, I and J are given by 

(38) 

J = f k,h, 
,= I 

(39) 

where Ra, is the local Rayleigh number which is based 

on the heat flux, physical properties and the height of 

the fluid layer 

Ra = g/V,3 .qh, 
’ v,a, kj 

For a solid, since /3Z = 0 and v, + co, Ra, = 0. The 
solutions for C are then 

(41) 

Since K is always positive, C = 0 is the only real root 

when I < J. It implies a quiescent state. When I > J, 
two sets of convection cells bifurcate from the rest 
state. The onset of motion is determined by the differ- 
ence between I and J. The critical heat flux can be 

found when 

i.e. when 

I=J 

A critical heat flux can be thus determined 

N 

1 kh, 
qc = 720+ 

gB,h,S 
c-- I= I Vi% 

(42) 

(43) 

(44) 

Once I > J, we have, from equation (41) 

r N 1 12 

C = f6q l”ri:R@-;;k’hi] 

With C given by equation (45), velocity 
perature profiles are obtained as 

and tem- 

. (45) 

(46) 

The heat transfer through the system represented by 

Nusselt number is then 

Nu = (49) 

4. RESULTS AND DISCUSSION 

The above derived critical heat flux for the onset of 

motion and heat transfer rate can be applied to an 
arbitrary number of fluid layers separated by solid 
partitions subjected to a uniform heat flux from 
below. In this section, we will apply the solution 
to some special systems consisting of multiple fluid 

layers. 

4.1. Singlejuid layer 
Dealing with the single fluid layer, the critical Ray- 

leigh number from equation (43) is reduced to 
Ra = 720, which agrees with the previous result given 
by Sparrow et al. [5]. Lienhard [17] developed a tech- 
nique for predicting the stability limit of conductively 

coupled horizontal layers heated from below and 
cooled from above. He also predicted a critical Ray- 
leigh number of 720 for a constant heat flux condition. 

The Nusselt number as for a Rayleigh number greater 
than the critical value of 720 is 

1ORa Nu = ___._ 
3Ra+5040 

Obviously, when the Rayleigh number is less than 
720, the Nusselt number is less than 1.0 which is 

physically unrealistic. When Ra becomes very large, 
the Nusselt number approaches to a limit of 10/3. 
Equation (50) for Nusselt number and its limiting 
value of 10/3 agrees with those of Vasseur et al. [14] 
when the titled angle in their study is set to zero. 

As for the situation of uniform temperatures at the 
top and bottom walls, the critical Rayleigh number is 
1708 [1, 71 which is higher than that of the uniform 
heat flux case. This is due to the fact that a uniform 
temperature wall dissipates the thermal disturbance 
easier compared to that of a uniform heat flux wall. 
To compare behaviors of Nusselt number dependence 
on Rayleigh number between the different boundary 
conditions, the analytical solution and experimental 
data for a uniform temperature wall [I] and the pre- 
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FIG. 3. Comparison of isothermal wall to uniform heat flux wall. 

sent solution for constant heat flux wall are shown in 
Fig. 3. The general trends of Nusselt number with 

Rayleigh number for both boundary conditions are 
the same, except the values where Nu starts to be 
larger than unity are different. It is also seen that at 
high Rayleigh number (5 x 104) the slope of the Nu 
curve has an abrupt change for isothermal walls. This 
is related to the transition of the preferred mode. 

Similarly, one may expect that the parallel flow mode 
is valid only up to a certain Rayleigh number, which 
is subjected to further study. 

4.2. Singlelfluid separated by a solid partition 

Let a solid partition be inserted into the above single 
fluid layer so that the heights of the top and bottom 
layers are h, and h,, respectively. The thickness of the 
solid and its conductivity are h, and k,. With subscript 
‘I ’ representing the properties of fluid, the critical heat 

flux determined from equation (44) becomes 

q, = 720 
k,(h,+h,)+k,hz ~. (51) 

and the heat transfer rate is 

When h, +h3 = constant, the critical heat flux qc has 
a maximum value if h, = h?. In other words, when 
the solid partition is located at the center of the fluid, 

the efficiency in suppressing motion is optimum. In 
this case the critical heat flux becomes 

By rearranging equation (53), one can obtain a critical 
Rayleigh number based on the properties and height 
of the fluid layer, as 

Let A be the mid-layer to fluid layer aspect ratio 

(54) 

and Xe the fluid to solid layer conductivity ratio 

Equation (54) can be expressed as 

(57) 

It is seen that Ra,, is a function of A/X,. Both Ulrich 
[ 181 and Lienhard [ 171 found that, for a small value 
of A, Ra, was a function of the single parameter A/X,. 

The present analysis agrees with their findings. Lien- 
hard listed Ru, for different A and X, [17]. For uni- 
form heat flux, the comparison of his data with the 

present prediction is listed in Table 1. The compari- 
son, as shown in Table 1, is favorable for small values 
of A and large values of X,, or for small values of 

A/X,. 
When A/X, < 0.333, the error is less than 0.3%. 

This suggests that for a two-layer system with a solid 
partition, the preferred mode on onset motion is par- 
allel flow if A/X, < I/3. Table 1 also proves the val- 
idity of parallel flow to the present uniform heat flux 
system. 

Table I. Comparison of critical Rayleigh number 
for two-layer system with solid partition. Present 

prediction (PP) ; Lienhard’s prediction (LP) [17] 

X,/A 0.001 

o,03 ; 744.00 

0.1 2; 727.20 
727.20 

1.0 rp 720.72 
720.72 

10.0 [pp 720.77 

PP 720.00 
co 

LP 720.00 

0.01 0.1 

960.00 3120.00 
956.69 1243.12 

792.00 1440.00 
792.00 1141.18 

727.20 792.00 
727.20 792.00 

727.72 727.20 
727.72 727.20 

720.00 720.00 
720.00 720.00 
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FIG. 4. Effect of mid-layer thickness on heat transfer for a 
two-layer system : X, = 1. 

As for heat transfer, the Nusselt number under the 

current case is 

Nu = 
lORa,(l+AX,) 

(58) 

3Ra,(l+AX,)+5040 

Here Ra, is the Rayleigh number based on single fluid 
layer height h, . The Nusselt number from equation 
(58) can also be written as a function of overall Ray- 
leigh number, which is based on h = (2h, + h2) 

Nu = - 
lORa(l+AX,) 

3Ra(l+AX,)+80640 l+; (l+A)4 
( > B 

(59) 

At this point, there is no published data available to 

compare the above formula for the present uniform 
heat flux boundary condition. The Nusselt number of 
Lienhard and Catton [9] for uniformly heated and 
cooled boundary condition, however, can be used as 
a reference. Figure 4 shows the Nusselt number as a 
function of overall Rayleigh number at several values 
of A. Within the range of lo4 < Ra < 105, the Nusselt 
number falls in the range 1 < Nu < 3, which is in the 

same range as that of ref. [9]. Figure 5 shows the effect 
of X, on Nu at A = 0.1. Compared to Fig. 4 in ref. 

[9] the trend of Nu with Xr, is just opposite, i.e. a 
higher Xr, gives a higher Nusselt number in the present 
case. From equation (59) it is seen that when 
A/X, < 1, Nusselt number is a strong function of 
AX,. Indeed, in their ‘engineering estimate’ for heat 
transfer, Lienhard and Catton [9] obtained an 
expression for Nu, which was a function of AX, only. 
This is consistent with the present prediction. Figures 
4 and 5 show that increasing A is equivalent to 
decreasing X,, or Nu depends on AX,. 

3.5, 

Overall Rayleigb Number, Ra 

FIG. 5. Effect of conductivity on heat transfer for a two-layer 
system: A = 0.1. 

The increase of thermal stability by inserting a solid 

partition can be appreciated by comparing the critical 
heat flux for both cases. Without the solid partition, 
the critical heat flux is 

The ratio of qc in equation (53) to that in equation 

(60) is 

(61) 

We see that if the solid partition is thin enough 
(h,/h, << 1), A + 0, the critical heat flux is increased by 
16 times. In the study by Catton and Lienhard [7] who 
considered the same problem but with an isothermal 

wall, and the one by Yang and Yang [lo], who con- 
sidered Benard-Marangoni instability in a two-layer 

system, an increase in Rayleigh number of 16 times 
was found. This is consistent with the present study. 
As for the Nusselt number, it will be 

Nu = 
1ORa 

3Ra+ 80 640 

where Ra is based on h. At the same Rayleigh number 
beyond the critical heat flux, the heat transfer is 
reduced much more due to the insertion of a solid 
partition. 

4.3. SingleJiuid separated by multi-solid partitions 
By merely inserting a thin partition into the center 

of a fluid layer, the critical heat flux for the onset of 
motion can be increased by 16 times. What is inter- 
esting in this section is to find the efficiency of inserting 
(M- 1) thin solid partition into a fluid layer. Now the 
total number of fluid layers is M. Again, the critical 
heat flux will be 
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47 

Overall Rayleigh Number, Ra 

FIG. 6. Nusselt number dependence on Rayleigh number for 
a system with (M- 1) solid partitions. 

(63) 

With the condition of 

F h, = h = constant 
/= I 

and 

(64) 

8% 
-=0 i= 1,2,...,M-1 
t?h, 

(65) 

one can find that qC reaches a maximum value only if 

,,,+...+.-=;. (66) 

Now the critical heat flux as from equation (63) is 

(67) 

The corresponding heat flux rate with Rayleigh 

number is 

1ORu 
Nu = 

3Ra+ 5040M4 
(68) 

A plot representing the dependence of Nusselt num- 
ber on Rayleigh number (based on k) at various M 
(here M- I is the partition number, and it4 the num- 
ber of fluid layers) is shown in Fig. 6. Equations (67) 
and (68), and Fig. 6 indicate that the increase in the 
critical heat flux is proportional to M4, and Nusselt 
number is substantially reduced when M is large. 

4.4. Equivalent Rayleigh number 

It is always interesting to define an equivalent Ray- 
leigh number for a multiple fluid layer system. By 

equation (43), if we define an equivalent Ru as the 
weighted average of k,h, of each layer, we will have 

.\ 
c Ra, 0, 

For solid partitions, Ra, = 0. so that the solids have 

the role of reducing the equivalent Rayleigh number 
or stabilizing the flow. Apparently, only if the equi- 
valent Rayleigh number reaches 720, will the fluid 
itart to move from the rest state. 

5. CONCLUSIONS 

A closed form solution has been derived for a sys- 

tem consisting of an arbitrary number of fluid layers 
separated by solid partitions. The system is subjected 
to a uniform heat flux from below and adiabatic 
boundary conditions at two ends. The solution gives 
the critical heat flux, fluid velocities and heat transfer 
rate. When applying to a single and a double fluid 
layer, the critical Rayleigh numbers are consistent 
with the previously published solutions. The solid par- 
titions are found to have optimum efficiency in sup- 

pressing fluid motion when they are uniformly dis- 
tributed. The increase in critical heat flux is 
proportional to M4 (where M is the number of fluid 
layers). An equivalent Rayleigh number can be 
defined as the weighted average of the product 01 
thermal conductivity and height of each individual 
layer. 
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INSTABILITE THERMIQUE ET TRANSFERT THERMIQUE DANS UN SYSTEME 
MULTICOUCHE SOUMIS A UN FLUX DE CHALEUR UNIFORME PAR LE BAS 

Resum~n ttudie I’instabilite thermique et le transfert thermique dans un systeme consistant en plusieurs 
couches separees par des partitions solides. Une solution analytique est obtenue quand le systeme est 
soumis a un flux uniforme par dessous et a des conditions aux limites adiabatiques aux deux extremites. 
Pour les cas d’une et deux couches, les nombres de Rayleigh critiques s’accordent avec les resultats 
prtcedemment publies. Les partitions solides sont trouvtes &tre les plus efficaces pour supprimer l’ecoule- 
ment et le transfert de chaleur quand elles sont Cgalement distribuees dans un seul fluide. Le nombre de 
Rayleigh equivalent est montre Ctre la moyenne ponderee du produit de la conductivite thermique par 

la hauteur de chaque couche. 

THERMISCHE INSTABILITAT UND WARMEUBERGANG IN EINEM 
MEHRSCHICHTSYSTEM BE1 GLEICHFGRMIGER BEHEIZUNG VON UNTEN 

Zusammenfassung-Die thermische Instabilitat und der Warmelbergang in einem System aus mehreren 
durch feste Zwischenlagen getrennten Schichten wird untersucht. Es ergibt sich eine geschlossene Losung 
fur den Fall, da0 das System durch einen gleichformigen Warmestrom von unten beheizt wird und an 
beiden Enden adiabate Randbedingungen herrschen. Fur die Grenzfalle mit Einzel- und Doppelschichten 
stimmt die kritische Rayleigh-Zahl mit friiheren Ergebnissen iiberein. Die festen Grenzschichten haben die 
beste Trenn- und Isolationswirkung fur Stromung und Warmelbergang bei gleichmagiger Verteilung in 
einem einzelnen Fluid. Die aquivalente Rayleigh-Zahl erweist sich als der gewichtete Mittelwert des 

Produktes aus Warmeleitfahigkeit und Hohe der einzelnen Schichten. 

TEI-IJIOBM HEYCTOti%iBOCTb H TETIJIOITEPEHOC B MHOFOCJIOnHOfi CHCTEME, 
I-IOABEmEHHOfi B03flERCTBMIO OflHOPOflHOF0 TEI-IJIOBOFO I-IOTOKA CHM3Y 

AHHoTPHHH-PIccne~yeTcK TeMOBaR HeycroiilurBocTb H TermonepeHoc B cHcrehie, KOTOpaK COCTOHT 83 
MHOxeCTBeHHbtX CJIOeB, pa3HeBeHHblX TBepBbtMH nep.erOpOKKaMH. DOBy’HeHO pemeHlie B 3aMKHyTOH 
@OpMe &ItK CBy¶aK, KOrLIil Ha CHCTeMy BO3BeiiCTByeT CHH3y OHHOpOBHSrfi TeMOBOii IIOTOK H y nB,‘X 

TOPIJOB HanaramTCn ama6a~wcme rpaHaYHhre ycnoaen. B npexenbbebrx cny%anx oworo H neyx 
CJtOeB KpHTH’teCKHe HHCJta P3JreK XOpOmO COrJ’laCyB3TCB C paHee Ony6JmKOBaHHbHfH pe3yBbTaTahfH. 
Ha&teHo, 9~0 npHMeHeHHe Teepnbrx neperoponoK HaH6onee ~+*KTHBHO .nrrn noxaenemix Teqemix H 

TenHOnepWoCa, KOrLla OHH OKHriaKOBO PaCnpeneBeHbl B OHHOii XHAKOCTH. DOKa3aH0, ‘IT0 3KBHBaKeHT- 
HOe YHCHO P3BeK BBJtKeTCK 83BemeHHbtM CpeaHHM llpOH3BeHeHHff K03@HnHeHTa TeMOnpOBOKHOCTH H 

~brco~bt KalKnoro cnon. 


