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Abstract—Thermal instability and heat transfer in a system consisting of multiple layers separated by solid

partitions are studied. A closed form solution is derived when the system is subjected to a uniform heat

flux from below and adiabatic boundary conditions at two ends. For limiting cases of single and double

layers, the critical Rayleigh numbers agree with previously published results. The solid partitions are found

to be most effective in suppressing flow and heat transfer when they are equally distributed in a single fluid.

The equivalent Rayleigh number is shown to be the weighted average of the product of the thermal
conductivity and the height of each layer.

1. INTRODUCTION

THE STUDY of thermal instability and heat transfer in
a system with one or more layers heated from below
finds many important applications in metal casting
operation, crystal growth, heat transfer in air pockets
of heat exchangers, air in the multiple layer glass
window, solar energy collector, and in many other
geological, chemical and astrophysical systems. The
theoretical study of the above-mentioned problem has
a direct link to the origination of turbulence, non-
linear instability of the flow, bifurcation and fre-
quency doubling. In many situations, one may be
concerned about the conditions which lead to the
motion in the quiescent fluid, and the heat transfer
mechanism switching from conduction to convec-
tion. In the other cases, one may be interested to know
how to suppress the possible convection due to
bottom heating. Even though single layer systems
[1-5] and double layer systems [6-10] heated from
below have received a great deal of attention in the
past, there have been very few studies related to the
thermal instability and heat transfer phenomena in a
system with more than two layers.

The objective of this paper is to study the onset of
a system consisting of multi-layer fluids separated by
solid partitions, and the consequent heat transfer
increase due to the fluid motion. The system under
consideration is displayed in Fig. 1. Here a steady heat
flux through the bottom is supplied to the system
which contains M layers of fluid and (M —1) layers
of solid. The total number of layers is N = 2M — 1.
Each layer is a shallow cavity, so that its height, A,
satisfies A; « L. The approximation of parallel flow
in each fluid layer enables the stream-function and
temperature to be expressed as fourth- and fifth-order
polynomials, respectively. Using appropriate bound-
ary conditions at the interfaces, the unknown

coefficients in the polynomials can be determined.
With energy conservation across all the layers, the
critical heat flux can be found for the onset of motion,
and the consequent heat transfer rate can thus be
obtained. The closed form solution is especially inter-
esting since it will provide an easy approach to this
complex problem. Attention will be drawn to physical
aspects of the influence of the conductivity, thickness
and relative position of the solid partitions in the
system.

2. GOVERNING EQUATIONS AND
BOUNDARY CONDITIONS

A two-dimensional shallow cavity filled with mul-
tiple layers of fluids separated by solid partitions is
considered. The system is heated by a uniform heat
flux g from below, and the end walls are adiabatic.
Let subscript i/ denote the ith layer. For the fluid
layers, with the Boussinesq approximation and the
approximation of constant physical properties, one
can write the continuity equation, the Navier—Stokes
equations, and the energy equation for the steady state
as follows:

() + (@), =0 )

() +o, (), = — i(p,-),ﬁrv,-[(u,-),mr(u,.)ﬂ,,,,,] )
(V) Foiv), =

- i (P, +vil(©) o+ @) ] +9BAT  (3)

ui( T:)Y + Ul'( 7"1)1 = ai[( T’i).x,x + (711)”] . (4)
For the solid layer, the energy equation takes the form
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NOMENCLATURE
a, b integration constants in the energy x,y  Cartesian coordinates
cquation Xz fluid to solid conductivity ratio.
A aspect ratio for the two-layer system
(equation (55b))
C temperature gradient in the x-direction Greek symbols
I specific heat % thermal diffusivity
g gravitational acceleration B volumetric expansion coefficient
h height of system 0 temperature varying in y
h; height of layer i v kinematic viscosity
1. J, K constants in equations (37)—(39) P density
J(f.¢) Jacobian, f.g,—f.9, v stream-function.
L length of cavity
M number of fluid layers
N total number of layers Subscripts
Nu  Nusselt number 1 fluid properties
P static pressure c critical quantities
q heat flux i ith layer (i = 1,2,....N)
R ratio defined in equation (62) t time derivative
Ra  Rayleigh number spatial derivative.
T temperature
Ty reference temperature
u, v velocity components in the x- and Other symbol
y-directions, respectively V? Laplacian operator.
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To unify our solution in a simpler fashion, the solid
is taken as fluid with infinitely large viscosity, so that
equations (1)—(4) will be reduced to

u,=0 (6)
v, =0 6]
(T) s+ (T x =0 ®

which is just what we need for the solid equation. As
a result of the separation of fluids by solid partitions,
the velocities at interfaces are zero. By this we can
write the boundary conditions as:

at interface (i, i—1)

=0, v;,=0, w_,=0, v_, =0,
Ti=T_ k(T),=k_(Ti-)), ®)
at interface (7, i+ 1)
=0, v,=0, u,, =0, p,,=0,
T=Ty k(T),=kui(Tw),  (10)
at twoend wallsof x =0 and L
=0, v,=0, k(T),=0. (11

A stream-function is introduced at this stage, so that
the continuity equation is always satisfied

U, = (‘flli),y’ v, = — (‘/’i),x‘

By cross differentiation of equations (2) and (3), one
can climinate the pressure terms in the momentum
equations, resulting in

JWi, V) = vV, —gB(T)...
The energy equation (4) can also be expressed as

J@, T) = _“5V2T1

(12)

(13)

(14)
where
J(f,g) =fxgy _f:vgx' (15)

The corresponding boundary conditions for the
stream-function will be:

at interface (7, i—1)

Yi=W, =0, Yy1=W-1),=0 (16)
at interface (i, i+ 1)
V=W, =0, Y =Wun),=0 (17
attwoend wallsof x =0 and L
Y= W) =0. (18)

3. ANALYTICAL SOLUTION

The solution of equations (13) and (14) with bound-
ary conditions (16)-(18) for an arbitrary number of
layers is difficult and time consuming. Since different
layers may have different physical properties, they
will enforce different length and velocity scales. The
present study seeks the solution of a unicellular pat-
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tern in each fluid layer as shown in Fig. 2. For this
unicellular flow pattern, apart from the end walls, a
parallel flow assumption can describe the basic flow
features well, and will be used in this paper. It is shown
that when heat flux is increased to a certain level,
muttiple solutions may become possible. However, we
will narrow down to the unicellular flow pattern to
make the simplest closed form solution possible.

The parallel flow approximation is originally from
the study of infinitely extended thin layers, and has
been used to study natural convection in a shallow
cavity heated at two ends by Cormack er /. [11] and
by Bejan and Tien [12] and in a shallow horizontal
cylindrical cavity heated at two ends by Bejan and
Tien [13]. It has been extended to a shallow inclined
cavity to study the multiple steady states of flow by
Vasseur et al. [14] and to the Bénard-Marangoni
instability in a two-layer system by Yang and Yang
[10]. This parallel flow is an onset mode, which has
zero wave number, due to constant heat flux from
below [5]. For the constant temperature condition,
the wave number of the onset mode is larger than zero
[15]. As shown in Section 4, the approximation is valid
for the present situation. In practice, the constant heat
flux boundary condition at the bottom can be supplied
electrically by passing the necessary amount of current
through heating coils suitably placed below the surface
[1]. The energy thus supplied can be conveniently mea-
sured by the square of the current times the resistance
of the circuit. If the top surface is a free surface, the
energy conducted up to the surface must be carried
away by convective—conductive transport to the
environment. A constant heat flux boundary can be
recognized when the Biot number is sufficiently high
[5]. In the parallel flow approximation, the flow is
assumed to depend on y only, so that r, =0,
u;, = u{y). The temperature field is assumed to be
a superposition of a linear function of x and an un-
known function of y. With this approximation,
obviously the boundary conditions of equation (11)
in the x-direction cannot be exactly satisfied, instead
an integral condition on the average flux at any y
section is used as in the following:

h,

N i
Z [plcpillin_ki(ﬂ).,v] dy =0.
0

i=1

(19)

The above condition for a single layer has been dis-
cussed and used by Vasseur er @l. [14] and Bejan
{16]. For the uniform flux heating in a single layer as
demonstrated by Vasseur ef al. [14], the parallel flow
approximation gives a reasonable prediction for the
flow and heat transfer in a cavity with an aspect ratio
less than 0.5 (shallow cavity). With this approxi-
mation we have

i =yL» 20
T, =Cx+06,(y) (21)

where the C;’s are the unknown constant temperature
gradients in the x-direction in the ith layer. As the
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FiG. 2. Sketch of parallel flow in the system.

continuity of the temperature at the interface requires,
it can be shown that at interface (i, i— 1) for any x
T,=T,_, (22)
will result in
Ci=Cy="=C=-=C(. (23)
With conditions (20)—(23), the governing equations
can be simplified to

_ 9B

(lpf).‘\ S 7Vi C (24)

c
(®i).){\' = ; (wi),y' (25)

If y is taken as the local coordinate with respect to the
ith layer, the boundary conditions are simply

at y=0, ¥, =@0),=0, 9,=0, ,
k(©), =k, 1(©, 1), (26)

at y=h, ¥,=W),=0, 0,=0,,,
k(©), =k 1(0,),. @n

The solutions of equations (24) and (25) are fourth-

and fifth-order polynomials, respectively. With
boundary conditions (26) and (27), we have
_9PC iy
b=, V=) (28)
_gBC (Y Y yR
© = hva, (5 oty Tarth 29

where a; and b, are integration constants. Continuity

of heat flux at interfaces (i, i— 1) and (i, i+ 1) leads to
(30)

kiovai_y =kia; = ke aiy .

For the first layer, where i = 1, a uniform heat flux at
the bottom surface gives

kia, = —q. 3
Combining with equation (30), one has
kia, =k,a, = =ka, = =kyay = —q.
(32)
Therefore
m:—%,i:L”wN (33)

Based on the continuity of temperature at interface (7,
i— 1), it is seen that

b =0 \W-s, -

If the temperature at the bottom is selected as a ref-
erence temperature, Ty, it is immediately found that

bl =Ty (35)

(34)

and b, fori = 2, 3,..., N, can be deduced from equa-
tion (34).

At this point, the only unknown in equations (28)
and (29) is constant C, which can be determined by
equation (19). It should be noted that equation (19)
represents the energy conservation across all N layers
at any y section. If it is applied to each individual
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layer, the constant C will be different for each layer,
which violates the requirement of temperature con-
tinuity at the interface set up by equations (22) and
(23).

Now by making use of equation (19) we are able to

find a condition that gives the value of C
C*—(I-NHC=0. (36)

Here K, I and J are given by

il '// ’ ki : kihi
k= ,.Zl o ,.<C> ,Z,R <q> 34 560
(37)
N NOR kh
ST Lo
J= fj kb, (39

where Ra; is the local Rayleigh number which is based
on the heat flux, physical properties and the height of
the fluid layer

_ gﬁlhl3 .i/zi

= a k) (40)

For a solid, since B, =0 and v; » 00, Ra; = 0. The
solutions for C are then

0
C—{i(I_J)I/Z/KI.Z' (41)
Since K is always positive, C = 0 is the only real root
when I < J. It implies a quiescent state. When 7> J,
two sets of convection cells bifurcate from the rest
state. The onset of motion is determined by the differ-
ence between [ and J. The critical heat flux can be
found when

I=J (42)
i.e. when
N Ra
h, t_1})=0.
X kb (720 ) 0 @3)
A critical heat flux can be thus determined
N
Z kihi
=720
0575 ﬁ P (44)
i=1 Vi,
Once I > J, we have, from equation (41)
N 172
14 Y (Ra;—T720)k.h,
C= +6g = (45)

ai2 kiBhi

1

Ile—-

With C given by equation (45), velocity and tem-
perature profiles are obtained as
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gBC

W=y y(y )2y —hy) (46)
v, =0 (47
_ gBC* (y* yh R
T[_Cx+24v,~oc,(5 2 T3
— AT W, @)

The heat transfer through the system represented by
Nusselt number is then

M=
Kt

T 2w gBhC
2z, [E-_nov ]

4. RESULTS AND DISCUSSION

(49)

The above derived critical heat flux for the onset of
motion and heat transfer rate can be applied to an
arbitrary number of fluid layers separated by solid
partitions subjected to a uniform heat flux from
below. In this section, we will apply the solution
to some special systems consisting of multiple fluid
layers.

4.1. Single fluid layer

Dealing with the single fluid layer, the critical Ray-
leigh number from equation (43) is reduced to
Ra = 720, which agrees with the previous result given
by Sparrow et al. [5]. Lienhard [17] developed a tech-
nique for predicting the stability limit of conductively
coupled horizontal layers heated from below and
cooled from above. He also predicted a critical Ray-
leigh number of 720 for a constant heat flux condition.
The Nusselt number as for a Rayleigh number greater
than the critical value of 720 is

~ 3Ra+5040° (50)
Obviously, when the Rayleigh number is less than
720, the Nusselt number is less than 1.0 which is
physically unrealistic. When Ra becomes very large,
the Nusselt number approaches to a limit of 10/3.
Equation (50) for Nusselt number and its limiting
value of 10/3 agrees with those of Vasseur e al. [14]
when the titled angle in their study is set to zero.

As for the situation of uniform temperatures at the
top and bottom walls, the critical Rayleigh number is
1708 [1, 7] which is higher than that of the uniform
heat flux case. This is due to the fact that a uniform
temperature wall dissipates the thermal disturbance
easier compared to that of a uniform heat flux wall.
To compare behaviors of Nusselt number dependence
on Rayleigh number between the different boundary
conditions, the analytical solution and experimental
data for a uniform temperature wall [1] and the pre-
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sent solution for constant heat flux wall are shown in
Fig. 3. The general trends of Nusselt number with
Rayleigh number for both boundary conditions are
the same, except the values where Nu starts to be
larger than unity are different. It is also seen that at
high Rayleigh number (5 x 10*) the slope of the Nu
curve has an abrupt change for isothermal walls. This
is related to the transition of the preferred mode.
Similarly, one may expect that the parallel flow mode
is valid only up to a certain Rayleigh number, which
is subjected to further study.

4.2. Single fluid separated by a solid partition

Let a solid partition be inserted into the above single
fluid layer so that the heights of the top and bottom
layers are /1, and h;, respectively. The thickness of the
solid and its conductivity are A, and k,. With subscript
‘I’ representing the properties of fluid, the critical heat
flux determined from equation (44) becomes

ki (hy +hs) +shy

=720 (51)
gﬁ'm5+ho
and the heat transfer rate is
hy+h, E
Nu = Ak (52)
YT h +@g ghi+RHCT
k, k, 720v,0,9

When 4, + k5 = constant, the critical heat flux ¢, has
a maximum value if 4, = k5. In other words, when
the solid partition is located at the center of the fluid,
the efficiency in suppressing motion is optimum. In
this case the critical heat flux becomes

vioy (2K iy +kohs)
= 360 AL TR
9B hi

By rearranging equation (53), one can obtain a critical
Rayleigh number based on the properties and height

of the fluid layer, as
koh,
2k\hy /)’

Let A4 be the mid-layer to fluid layer aspect ratio

(53)

Ra,, =720 <1 + 54

by
A= (55)

and X the fluid to solid layer conductivity ratio

Xy = E 56)
= (
Equation (54) can be expressed as
Ra, =720(1 /i 57)
ac] - + XB . (

It is seen that Ra,, is a function of 4/X;. Both Ulrich
[18] and Lienhard [17] found that, for a small value
of 4, Ra, was a function of the single parameter 4/Xj;.
The present analysis agrees with their findings. Lien-
hard listed Ra, for different 4 and X3 [17). For uni-
form heat flux, the comparison of his data with the
present prediction is listed in Table 1. The compari-
son, as shown in Table 1, is favorable for small values
of 4 and large values of Xy, or for small values of
A/ X

When A4/Xy < 0.333, the error is less than 0.3%.
This suggests that for a two-layer system with a solid
partition, the preferred mode on onset motion is par-
allel flow if 4/Xy < 1/3. Table 1 also proves the val-
idity of parallel flow to the present uniform heat flux
system.

Table 1. Comparison of critical Rayleigh number
for two-layer system with solid partition. Present
prediction (PP) ; Lienhard’s prediction (LP) [17]

Xy/A 0.001 0.01 0.1
003 PP 744.00 960.00  3120.00
e 956.69  1243.12
o1 PP 727.20 792.00 144000
< LP 727.20 792.00  1141.18
o PP 720.72 727.20 792.00
Yoop 720.72 727.20 792.00
0o PP 720.77 727.72 727.20
YooLp 727.72 727.20
PP 720.00 720.00 720.00
*Lp 720.00 720.00 720.00
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FiG. 4. Effect of mid-layer thickness on heat transfer for a

two-layer system: Xy = 1.

As for heat transfer, the Nusselt number under the
current case is

10Ra, (14+ AX,
Nu = a( B)

y (58)
3Ra,(1+AXB)+5040(1+7)
B

Here Ra, is the Rayleigh number based on single fluid
layer height A,. The Nusselt number from equation
(58) can also be written as a function of overall Ray-
leigh number, which is based on / = (2h,+h,)

10Ra(l + AXy)

Nu = .
A

3Ra(1 + AXg)+ 80640 <l + f) (1+4)*
B

(59)

At this point, there is no published data available to
compare the above formula for the present uniform
heat flux boundary condition. The Nusselt number of
Lienhard and Catton [9] for uniformly heated and
cooled boundary condition, however, can be used as
a reference. Figure 4 shows the Nusselt number as a
function of overall Rayleigh number at several values
of A. Within the range of 10* < Ra < 10°, the Nusselt
number falls in the range 1| < Nu < 3, which is in the
same range as that of ref. [9]. Figure 5 shows the effect
of Xz on Nu at 4 =0.1. Compared to Fig. 4 in ref.
[9] the trend of Nu with Xj is just opposite, i.c. a
higher Xj; gives a higher Nusselt number in the present
case. From equation (59) it is seen that when
A/Xp < 1, Nusselt number is a strong function of
AXg. Indeed, in their ‘engineering estimate’ for heat
transfer, Lienhard and Catton [9] obtained an
expression for Nu, which was a function of 4 Xy only.
This is consistent with the present prediction. Figures
4 and 5 show that increasing 4 is equivalent to
decreasing X, or Nu depends on AX5.
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—

The increase of thermal stability by inserting a solid
partition can be appreciated by comparing the critical
heat flux for both cases. Without the solid partition,
the critical heat flux is

(60)

The ratio of g, in equation (53) to that in equation
(60) is

R=16(1+4)* <1+i>. (61)

X
We see that if the solid partition is thin enough
(hy/h, « 1), A - 0, the critical heat flux is increased by
16 times. In the study by Catton and Lienhard [7] who
considered the same problem but with an isothermal
wall, and the one by Yang and Yang [10], who con-
sidered Bénard-Marangoni instability in a two-layer
system, an increase in Rayleigh number of 16 times
was found. This is consistent with the present study.
As for the Nusselt number, it will be

10Ra

= 3Ra+ 80640

(62)
where Ra is based on A. At the same Rayleigh number
beyond the critical heat flux, the heat transfer is
reduced much more due to the insertion of a solid
partition.

4.3. Single fluid separated by multi-solid partitions

By merely inserting a thin partition into the center
of a fluid layer, the critical heat flux for the onset of
motion can be increased by 16 times. What is inter-
esting in this section is to find the efficiency of inserting
(M —1) thin solid partition into a fluid layer. Now the
total number of fluid layers is M. Again, the critical
heat flux will be
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M
ki Y h
—720*. 63
I (63)
vigg o
With the condition of
M
> h; = h = constant (64)
i=1
and
09 L0 =12, M~ 65
oh, Toee e (65)

one can find that ¢, reaches a maximum value only if

h1=h2= =h,-= =M (66)
Now the critical heat flux as from cquation (63) is
kv
_ ERAS R Rl |
q. = 720M°~—— 67
gpn

The corresponding heat flux rate with Rayleigh

number is

10Ra
Ra+ 5040 M

Nu = (68)

A plot representing the dependence of Nusselt num-
ber on Rayleigh number (based on #) at various M
(here M —1 is the partition number, and M the num-
ber of fluid layers) is shown in Fig. 6. Equations (67)

and (68), and Fig. 6 indicate that the increase in the

critical heat flux is proportional to M*, and Nusselt
number is substantially reduced when M is large.

4.4, Equivalent Rayleigh number
It is always interesting to define an equivalent Ray-
leigh number for a multiple fluid layer system. By

5. CONCLUSIONS

A closed form solution has been derived for a sys-
tem consisting of an arbitrary number of fluid layers
separated by solid partitions. The system is subjected

to a umform heat flux from below and adlabauc
boundary conditions at two ends. The solution gives
the critical heat flux, fluid velocities and heat transfer
rate. When applying to a single and a double fluid
layer, the critical Rayleigh numbers are consistent
with the previously published solutions. The solid par-
titions are found to have optimum efficiency in sup-

nressing fluid motion when fhpv are nn1f‘nrm|\/ dis-
pressing ¢ molion when they are uniforn dais

tributed. The increase in crmcal heat ﬂux is
proportional to M* (where M is the number of fluid
layers). An equivalent Rayleigh number can be
defined as the weighted average of the product of
thermal conductivity and height of each individual
layer.
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INSTABILITE THERMIQUE ET TRANSFERT THERMIQUE DANS UN SYSTEME
MULTICOUCHE SOUMIS A UN FLUX DE CHALEUR UNIFORME PAR LE BAS

Résumé—On étudie I'instabilité thermique et le transfert thermique dans un systéme consistant en plusieurs
couches séparées par des partitions solides. Une solution analytique est obtenue quand le systéme est
soumis a un flux uniforme par dessous et & des conditions aux limites adiabatiques aux deux extrémités.
Pour les cas d’une et deux couches, les nombres de Rayleigh critiques s’accordent avec les résultats
précédemment publiés. Les partitions solides sont trouvées étre les plus efficaces pour supprimer I’écoule-
ment et le transfert de chaleur quand elles sont également distribuées dans un seul fluide. Le nombre de
Rayleigh équivalent est montré étre la moyenne pondérée du produit de la conductivité thermique par
la hauteur de chaque couche.

THERMISCHE INSTABILITAT UND WARMEUBERGANG IN EINEM
MEHRSCHICHTSYSTEM BEI GLEICHFORMIGER BEHEIZUNG VON UNTEN

Zusammenfassung—Die thermische Instabilitit und der Wéirmeiibergang in einem System aus mehreren
durch feste Zwischenlagen getrennten Schichten wird untersucht. Es ergibt sich eine geschlossene Losung
fiir den Fall, daB das System durch einen gleichférmigen Wirmestrom von unten beheizt wird und an
beiden Enden adiabate Randbedingungen herrschen. Fiir die Grenzfille mit Einzel- und Doppelschichten
stimmt die kritische Rayleigh-Zahl mit fritheren Ergebnissen {iberein. Die festen Grenzschichten haben die
beste Trenn- und Isolationswirkung fiir Strémung und Wirmeiibergang bei gleichmiBiger Verteilung in
einem einzelnen Fluid. Die dquivalente Rayleigh-Zahl erweist sich als der gewichtete Mittelwert des
Produktes aus Warmeleitfahigkeit und Hohe der einzelnen Schichten.

TEIJIOBASA HEYCTOMYHUBOCTB U TEIIJIONEPEHOC B MHOIOCJIOMHOY CUCTEME,
TMOJABEP)KEHHON BO3AEACTBUIO OQHOPOAHOI'O TEILIOBOI'O MOTOKA CHU3Y

Ammoramms—HccnenyeTcs TenioBas HeyCTOHYMBOCTD M TEIUIONEPEHOC B CHCTEME, KOTOPAS COCTOHT M3
MHOXECTBEHHBIX C/IOEB, Pa3le/ICHHBIX TBEPALIMH Ieperopoakamu. I1ony4eHo pellleHHe B 3aMKHYTOMH
¢opme s ciydas, Koraa Ha CHCTEMY BO3ACHCTBYET CHH3Y OQHODOAHBIA TEILIOBOH NMOTOK M Y JBYX
TOPLOB HAJIArailoTcs aauabaTHiecKHe rpaHMYHLIC YCIOBHA. B NpemesbHBIX CilyyasXx OXHOTO M IBYX
CJIOEB KPUTHYECKHE 4HCa Panes XOpoIIo cOriacylorcs ¢ paHee omyGJIMKOBAHHBIMH pe3ynbTaTaMH.
Haiineno, 4T0 npHMeHEHHE TBEPABLIX NEPEropoaok HauGolee pdeXTHBHO IJIA MOJABJICHAS TEYEHHS U
TEIJIONepeHoca, KOraa OHA OfMHAKOBO paclpeneJieHsl B OAHOM *HAKocTH. [TokasaHo, YTo SKBHBAJIEHT-
Hoe 4HCIO Panest sBAsIETCS BIBEICHHBIM CPEIHHM IIPOM3BEleHHs K03 HLMEHTA TEILTONPOBOIHOCTH H
BBICOTBI KaXIOTO CIIOA.



